Holidays Home work

Class: IX

Activity

- Construct a Square Root Spiral.
- Represent $\sqrt{10}$ and $\sqrt{5}$ on number line.
- Verify the Algebraic Identity (a+b)² = a² + 2ab+b² using grid paper.
- Represent $\sqrt{6.3}$ geometrically

Project: Select any one topic out of the following topics and present under the following heads

- (i) Introduction of the topic
- (ii) Relevance/objective of the topic
- (iii) Different contains (sub topic) with appropriate Examples
- Application (iv)
- Conclusions (v)
- (vi) **Bibliography**

Topics are as follows

- (i) **Euclid Geometry**
- (ii) **Probability and Chances**
- (iii) **Statistics**
- Number system (iv)
- Vaidic maths (v)
- Maths and Architecture (vi)

Application:

- 1. Write 10 rational numbers between $\frac{2}{3}$ and $\frac{3}{5}$
- 2. Simplify: $(4+\sqrt{3})(4-\sqrt{3})$
- 3. Rationalise the denominator of $\frac{1}{\sqrt{3}-\sqrt{2}}$.
- 4. Express the following as a fraction in the simplest form. 2.23 (ii) 3.123 (iii) 1.3
- 5. Simplify 11.4565 ÷ 2.67
- 6. If $\mathbf{x} = (2 + \sqrt{3})$, find the value of (i) $\mathbf{x} + \frac{1}{x}$ (ii) $\mathbf{x}^2 + \frac{1}{\sqrt{2}}$
- 7.Write 5 irrational numbers between $\frac{5}{7}$ and $\frac{8}{11}$
- 8. Find remainder if p(x) is divided by g(x)
 - (i) $P(x) = x^3 + 4x^2 7x + 3$; g(x) = x + 2 (ii) $P(x) = x^3 7x^2 + 3x + 3$; g(x) = x 1(ii)
 - (iii)

HOTS

- 9. Factorise: $x^4 3x^2y^2 + y^4$
- 10. Show that: $\frac{1}{3-\sqrt{8}} \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2} = 5$

1. Which one is not a polynomial

- (a) $4x^2 + 2x 1$
 - $y + \frac{3}{y}$
- (b) (c) $x^3 - 1$
- (d) $y^2 + 5y + 1$
- 2. The polynomial $px^2 + qx + rx^4 + 5$ is of tyep
- (a) linear
- (b) quadratic
- (c) cubic
- (d) Biquadratic
- 3. Identify the polynomial
- (a) $x^{-2} + x^{-1} + 5$
- (b) $x^2 + 5\sqrt{x} + 7$

(c)
$$\frac{1}{x^3} + 7$$

- (d) $3x^2 + 7$
- **4.** The zero of the polynomial p(x) = 2x + 5 is
- (a) 2
- (b) $\frac{2}{2}$ (c) $\frac{2}{5}$
- (d) $\frac{1}{2}$
- 5. The number of zeros of $x^2 + 4x + 2$
- (a) 1
- (b) 2
- (c) 3
- (d) none of these
- **6.** The polynomial of type $ax^2 + bx + c$, a = 0 is of type
- (a) linear
- (b) quadratic
- (c) cubic
- (d) Biquadratic
- 7. The value of k, if (x 1) is a factor of $4x^3 + 3x^2 4x + k$, is
- (a) 1
- (b) 2 (c) -3
- (d) 3
- 8. The degree of polynomial $p(x) = x + \sqrt{x^2 + 1}$ is
- (a) 0
- (b) 2
- (c) 1
- (d) 3
- **9.** If 3 + 5 8 = 0, then the value of $(3)^3 + (5)^3 (8)^3$ is
- (a) 260
- (b) -360
- (c) -160
- (d) 160
- 10. If value of 104×96 is

```
(a) 9984
(b) 9469
(c) 10234
(d) 11324
11. The value of 5.63 \times 5.63 + 11.26 \times 2.37 + 2.37 \times 2.37 is
(a) 237
(b) 126
(c) 56
(d) 64
                         (361)^3 + (139)^3
12. The value of \frac{(361)^2 - 361 \times 139 + (139)^2}{(361)^2 - 361 \times 139 + (139)^2} is
(a) 300
(b) 500
(c) 400
(d) 600
13. If x + y = 3, x^2 + y^2 = 5 then xy is
(a) 1
(b) 3
(c) 2
(d) 5
14. If x + 2 is a factor of x^3 - 2ax^2 + 16, then value of a is
(a) 3
(b) 1
(c) 4
(d) 2
15. If one of the factors of x^2 + x - 20 is (x + 5). Find the other (a) x - 4
(b) x + 2
(c) x + 4
(d) x - 5
```

----- END-----